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1. Introduction

The bivariate Farlie-Gumbel-ibrgenstern (FGi) distribution has joint

curmlative distribution function (cdf)

Flz(xl)xz) = Fl(xl)Fz(xz){l + aSl(xl)Sz(xz)} 1
.&; GrAth |a| s 1)
| where Fj (xj) is the cdf of X). (j=1,2) aanc Sj (xj) =1 - Fj(xj) is the
} survival distribution function (sdf) of Xj .
In’Johnson and Kotz (1276) we discussed certain generzlizations of (1).
, ! votivated by some remarks of Farlie (1960), we suggested revlacing the
: product S1 (xl)S2 (xz) (which would be tae joint scf of Xl and }{2 if
they were inderendeat) in (1) by the joint sdf of anvother bivariate FGi
| distribution, namely
E
2 s (x),%5) = 55(x1)5, ()1 + agFy (x)F, (x,)} @ |
with |°‘1| % 1. :
é Thais procedure can be iterated in various wavs. In narticular, we can .
renlace Fl (xl)Fz (xz) in (2) by the FG!I type distribution i

Fg} (515%p) = Fp ()P, (x,3 {1 + 0,8, ()5, (x,) ). (3)

(Of coursse Fl(g) nigat itself Le of the form of a f“irst staze iterate
FG1 distribution, like (2), but here we will restrict ourselves to the
relatively simple form (3).)

¢ One purpose of introducing these iterated generalizations of bivariate

FE T uistributions was to check if one could remedy a defect of bivariate




‘ i = ; TR Bt e e i bud

ol fanur B LR

For FG! distributions with ncmmial marginsls tie correlacicn coefficient
|

is ar ' , and, since |la] = 1, tiis means that the absolute ragnitude

of the correlation ccefficisnt cannot exczed n’l (= 0.32 approx.)

' 2
pi

& L FG! distributions — namely, the relatively low correlation coefficients
"

ga 1 tuat can be attzined with such distributions.

an

1]

I e g

In the present note we find that iterations of the xind described

above caimot increase the maxirrmn possible dzpendence (as measured by an
index suggested by Schweizer and Wolff (197€)), between the variables by
rore thaa about 0.12, no matter how nany iterations are perforred. ‘'le

. ‘ therefore investigate a few other nodifications of bivariate FG1 distribu-
! tions vhich nirht increase devendence more substantially, but we find that
necessary restrictions on the values of the o’s are sucii as to seriously

lirit the possibilities.

A 2. Ochweizer N Wlff's leasure of Dapandence

The measure of dependence iatroduced by Schweizer & Jolif (1976) is

essentially (for continuous joint distributicns), the erpected value of

, 12|F 5 (5,%5) - By (X)F, ()] (4)
| (or, enuivalently, of

12]81,(%5%,) - 5, ()5, 01 ). (4')

denoting this by the symbol (ow)y it is clear that it is unchanged
L= 8 |
17
by any wonotonic transformation is applied to either (or botn) of the variables L

X.l,x2 . In particular we can suppose that such transformations have been
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applied to produce variables Xl, XL, wiich are each uniforrly distributed

cetween 9 and 1. Then

1,1
(ow)xl,v =12 [0 IO |F12(x1,x2) - xlledxldxz . ()

I€ X, and X, are rutually independent, (ow)y . = 0. The maxirum
possible vaiue of (ow) xl’xz is 1, and this is attained when, with proba-
bility 1, }(1 and }(2 are ronotonic fumctions of each otler.

(Taen Xl and XZ are each umiformly distributed over (0,1), if

o

4 il Xz are each ronotonic functions of the otner then we rust have
zither X, = X » S S S
ther A& =48y O A 1 29 )

Je will use this measure of derendence in our studies, rather than

the better-known mean square contingency. This is cuite closely related

to the Schweizer-'olff index,(see Section 5)— but the comparisons using

it are not so clearcut as using the latier measure.

3. Depsndence in Generalized FOI! Distributions

If tue marginal distributions are each miform over (0,1) <¢then the
FRicdf (1) is

and
] 1 1 -
(cmu)X X, = 12]a| j J xl(l-xl)xz(l-xz) ‘11{1'-1)(2
14 0’0
N R S | ;
=4 12'“'(‘;‘ % '3')‘ i glag' (0)

This is of course the value of (ow)y y for any continuous FR! distribution
7
with cdf (1).
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For the once iterated FG! distribution with unifom (0,1) marginal

distributions we have

Flz(xl,xz) = xlxz[l + a(l-xl) (l-xz){l + alxlxz}} (N
wiience
1 2 2
= (Ve Yor Moy - o 2 A A
(ow)xlx2 12 {0 L) fom1\1 ,-.1)‘.2\1 x,) + c,al/.l(l xl)xz(l Xl”‘“‘l‘“z .

For given muaericel values of a, ay we will get the largest vaiue for
(ow),{ 1 by having a, oy of the same sign. Taking o>0 and a; > 0
4 <
1

e

we obtain

(@), =26 - D rogG- Dl =dat ooy =20 +doda. (9
S

Similarly, we find for the twice iterated FGi distribution, with

az=0, (1120, a220

g | 1 1
s = il it o Tl e o R )
Zenerally for the r-th iterated FCO! distribution with no negative
a’s
)
(ow).. ., =12 a.a!
o g j=1 ]
where aj = a
j-1
o = I o (322)
J i=1 i

anc

(11)

{{B(iié, 3 for j oad
a, = : " .
J {3(1;?-, %—2-)}2 for j even

where B(i,j) is the Deta function.

L
Uﬁ»a«% FR A isd V' falle et ‘
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Siace Osalsa, ;... 50 =0, it follovs that
] )
(ow)y » < 12a 2. < 12a a.
Tk j=1 ot -
and so
(ow)y x €120 ] [B@MIE + (3w, 1)
1 h=2
=15« J {3(h,h)}" (12)

h=2
(since B(h+l, h) = %3(h,h) ).

[+5]
dow  § (B, = 672 + 3072 + 1407 4 63072 4 ...
n=2 )
sttt smnteamrioeaterts .y
< 0.029 (13)
and so
(ow)y v < 15 x 0.029% = 0.435 (14)
%%

however many iterations are used.

This sihows that iterations of the kind described in Section 1 camnot
lucreasc the measure of dependence (ow) A above 0,435,

The reason for the low limit on the neasure of denendence is in thue
rapid decrease of B(h,1) as h increases. A natural way to avoid this

woull be to use distributions of form
3 ‘bl ¢,
Flz(xl,xz) = Fl(xl)Fz(xz) i1+ a{Sl(:cl)} {Sz(xz)} i
with 0 < ¢j <1 (j =1,2). Unfortunately this is not z prover distribution

function for any absolutely continuous marginals Fy(xq), Fy(x,). Ve have
2

s footie B Gy Y : 3

. W\ x_h{
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Iy choosiis % SO that (1 + ¢1)F(x1) >1 and Xy SO thet .‘32 (xz) is

sufficiently small we rake tue exrression in scuars Lrackets ne-mative.

33 pos 3 - AL T D - .1 Ll A - P
Since Py(%,) <1 and S,(x,) > 0, we can alvays find x;, X, so tast
S -

&

2
-.(.\..1) > U a.l(- (4-.~) > G .)

l-l
v

it Sorie other modifications of Uivariace FT. listributions are discissed

. i
Fom weTam gy et e T e 3 e, B N— 1. 2 vy ~ S i ey
in the next section, wita spscial referencs to wossible increasss in deven-
dence.
2 € myrne Aty Doeyen - 5 O T S
4. Sone Jathner Seneralized FAL Uistributions

4.1 Tae following example suows dirscily liow the restrictions on tle values

of the a’s mnilitates against realization of substaitial in

ol e
Fa s o
b "' consider a family of aistributions cohiainel Ly rodifying (1) with

reniacenent of
’ ) N IR 1 T (- E_f{ E | 3 ar Q -

B 1(/-:‘)- 2(“2) Y & 1(4‘1)‘ 2(1(“:) i1 s g | (l-l)‘— E(-\' )}
Es 2

(2,)5,(x,){1 + a,F (x

and ul(xl)v,:.z :-:2) oy 5y (%35, (0 2y

Transforming so that each mereinal ‘istribution is miform over (0,1)

‘ we LEve
P Flz(xlg}'sz) 4.-¢-2{.s + & (1 yl) (1 sz)f{d. + \L(L'y“)(---’ ") ('L 2 a,,}\.‘,'._.’)}

M < %3¢ 1, §=1,2). (15)

nence

1 71 : ’
o ’ 2 2
(m);Cq i = 12 L L I(O."'a-),(lle'( ,c:_) (1-::2) + (",La:.-)(l:’.z(l-;(l) (l-xz)

~ o~

£.7 : L X 2 2 s
+ uaz::lztz(l-xl) (l-xz) + aalaz,cl;’.:(l-zl) (1-;{2)"|ca"lux2 5




7
& If all a’s are nomnezative then
& 1W0he ¢ IR b)) ¥ el Ye) * oy (16)
Ef
: If we only needed the conditions || <1, Iall =1, |o,] s1 then it
’*’} would appear that we could get values of  (ow) X, ,X as near to
21 2 1 ! k)
" =+ %‘- + ;—5- = 0.346 as desired.
4 Dowever, the o's must be such taat
; BZF
= 1 = ks, v - = - T =%
3x13x2 1+ (a+a1) (@ le) 1 sz) + c,ozl(l xl) a 3x1) (1 (.2) (1 sz)
E + a.o.le(z-le) (2-3)(2) + 40:0,1042:{1(1-::1) (1-2)&):{2(1-;:2) (1-2}(2) =20 On
B
:} for x;, x, with 0« X8I, 0sx <1,
1 i Dicting % = g, L=1 gives
3 + %1
: it Q Ql - .
' Tris implies that
‘4‘ (o) v 'S % + %7a(1 Yo, -a)*t V-a(l-a)aa :
: 4\11\2 L &
slsd (2-a) + - (1-a0)
| 3 S g 75%
,‘v i} ) < 0.417 for 0 <a < 1. (13) :
‘ i
4,2 Tae wodified FG1 fanily deflined by 1
; Fra(xux)) = Fy(x)Fy(xp) 10 + o nin(Sy (), S,(x,)) ] (19)
or equivalently




b
Flz(xl’xz) i FI(XI)FZ(XZ)D' +a{] - max-(Fl(xl),F (xz))}] (19)'
has a somewhat larger value of (ow)... . We have
1\11'~2
1,1
(ow)+ + =12aJ J X %,{1 - max(x,,x,)}dx,dx
4%, 0o : S 32 172
& a2
=1Zax 2 f I xlxz(l-xz)dxldxz
0’0
b
= 0.6a. (20)

-

Tuis is considerably .iarger (if o>0 ) than the values so far obtained,

but it still cammot exceed 0.6.

e .

5. Comparison with ilean Contingency

The rean contingency (as defined by Rényi . (1970, p. 232) ) for an

absolutely continuous distribution with standard uniform marginal distribu-

tion is
2 £ 5 3
d)- “r - I J’ (_f —-(X ,.K ) dX d.}\,’_.-. = l (21)
4(1;1\2 5 g 74k 1 Gt
o%F,, : :
where f,, = W is the joint prcbability density function of Xl and
')(2 .
Table 1 sumarizes values of (ow). X, and the corresponding values
l\l

of ¢,( S for the distributions discussed in this note.
T2




TABLE 1 Comparisona of

Value of (cw)v X
e

from eq. value

©)
¢

ol
7@+
B
] 700 5 %,

(16) )l sy

2
e %
Corresponding value

2
of &
¢x1x2
1.2

Eiat
4 2.2
-(1—(1+}u +2T:a1)a
1 2.7

_‘.
(L4300 75307 +350107+ 350005 ‘*2’5*’1“2)“

5 (o) sa o) (0%, +3z0” (03 #a?)

+‘5‘5‘("““"1)““"1"‘2“‘570"‘ e (0 *0,+1)

& 2312
NI 00}

tle note that for (6)

Z
(ow)y +
;(11\2
and for (3)
z

(ow)}z,
\1‘\2

and for (9), approximately

2 2
(ow) = ¢ -
XX, 1 XX,

= 45
%y X

1700 L1 *

4a2

2. 22
13) *(35 a;)

]a oy
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